头条资讯 - 为您提供最新最全的新闻资讯,每日实时更新

冻土区土壤中的“微观世界”

科学 光明网

冻土是一种长期处于低温环境并对气候变化十分敏感的特殊土壤 (图1)。由于低温限制了土壤微生物对有机质的分解,导致冻土中储存着大量有机碳。最新研究结果显示,冻土区土壤碳储量高达1.3万亿吨,约占全球土壤碳库的一半以上。然而,这一重要碳库目前却受到了气候变暖的严重威胁。特别是在“极地放大效应”的作用下,冻土分布区的增温速率达0.6℃/10年,约为全球平均增温速率的两倍。

快速的气候变暖导致大面积冻土融化,进而使得冻土中长期封存的有机碳被微生物分解,以CO2和CH4等温室气体的形式释放至大气中,最终会进一步加剧气候变暖。作为生物地球化学循环的引擎,土壤微生物在调控冻土碳循环中起着重要作用。因此,认识冻土区土壤微生物特征,揭开冻土区土壤中“微观世界”的神秘面纱,对准确预测冻土碳循环与气候变暖之间的反馈关系至关重要。

冻土区土壤中的“微观世界”

图1 裸露的冻土土壤剖面(摄影:刘富庭)

为了探索冻土区土壤中的“微观世界”,中国科学院植物研究所杨元合研究组依托在青藏高原祁连山冻土分布区建立的热融塌陷观测平台(图2),基于宏基因组测序、室内培养和碳分解模型等多种手段,解析了土壤微生物群落结构和功能沿冻土融化序列的变化及其关键驱动因素 (图3)。

冻土区土壤中的“微观世界”

图2 冻土热融塌陷景观(摄影:刘富庭)

冻土区土壤中的“微观世界”

图3 冻土热融塌陷对土壤微生物群落结构和功能的影响及其关键途径

(绘图:陈蕾伊和刘富庭)

研究发现,热融塌陷16年后,表层土壤微生物群落发生了明显改变:细菌相对含量显著增加,而古菌和真菌的相对含量显著降低。并且,表征微生物碳分解活性的功能基因丰度也随之改变,其中降解惰性碳组分的基因丰度增加,表明微生物对惰性碳的分解能力增强。鉴于惰性碳在土壤碳库中的占比较大(超过50%),这种原本难以降解的有机碳组分被微生物分解后可能会造成更多的碳释放。进一步研究发现,底物属性的变化是调控微生物群落结构和功能变化的主要因素。

为了进一步验证基于典型冻土融化序列观察到的微生物响应规律是否具有普适性,研究人员在青藏高原典型冻土区开展了大范围冻土取样工作(图4),并结合基因芯片、高通量测序和室内培养等方法在更大尺度上揭示了冻土融化后微生物群落结构和功能的变化,构建了冻土融化引起的微生物多样性变化与土壤碳释放之间的耦联关系。结果发现,冻土融化导致细菌和真菌的α多样性显著下降,而功能基因α多样性显著增加。进一步研究发现,冻土融化导致的土壤碳释放主要取决于微生物功能多样性,而与分类多样性无关(图5)。

冻土区土壤中的“微观世界”

图4 青藏高原冻土区样点分布图 (绘图:房凯和陈永亮)

冻土区土壤中的“微观世界”

图5 冻土融化引起的微生物多样性变化及其与土壤碳释放的关联 (绘图:刘富庭)

上述研究结果提供了微生物群落结构和功能响应冻土融化的多尺度证据,拓展了学术界关于冻土融化对土壤微生物影响机制的认识,相关结果以两篇系列论文的形式发表于国际学术期刊 Global Change Biology。刘富庭博士和陈永亮博士分别为两篇论文的第一作者,杨元合研究员为通讯作者。该研究得到了国家自然科学基金、第二次青藏高原综合科学考察研究等项目的资助。

来源:中国科学院植物研究所

来源:中科院之声

转载请超链接注明:头条资讯 » 冻土区土壤中的“微观世界”
免责声明
    :非本网注明原创的信息,皆为程序自动获取互联网,目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责;如此页面有侵犯到您的权益,请给站长发送邮件,并提供相关证明(版权证明、身份证正反面、侵权链接),站长将在收到邮件24小时内删除。
加载中...